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Abstract

Individuals do not respond uniformly to treatments, such as events or interventions. Sociologists routinely
partition samples into subgroups to explore how the effects of treatments vary by selected covariates, such
as race and gender, on the basis of theoretical priors. Data-driven discoveries are also routine, yet the anal-
yses by which sociologists typically go about them are often problematic and seldom move us beyond our
biases to explore new meaningful subgroups. Emerging machine learning methods based on decision trees
allow researchers to explore sources of variation that they may not have previously considered or envi-
saged. In this article, the authors use tree-based machine learning, that is, causal trees, to recursively parti-
tion the sample to uncover sources of effect heterogeneity. Assessing a central topic in social inequality,
college effects on wages, the authors compare what is learned from covariate and propensity score—based
partitioning approaches with recursive partitioning based on causal trees. Decision trees, although super-
seded by forests for estimation, can be used to uncover subpopulations responsive to treatments. Using
observational data, the authors expand on the existing causal tree literature by applying leaf-specific effect
estimation strategies to adjust for observed confounding, including inverse propensity weighting, nearest
neighbor matching, and doubly robust causal forests. We also assess localized balance metrics and sensi-
tivity analyses to address the possibility of differential imbalance and unobserved confounding. The
authors encourage researchers to follow similar data exploration practices in their work on variation in
sociological effects and offer a straightforward framework by which to do so.
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Heterogeneity in response to life events and circumstances is common. Individuals dif-
fer both in pretreatment characteristics (i.e., pretreatment heterogeneity) and in how
they respond to a common treatment, event, or intervention (i.e., treatment effect het-
erogeneity). Treatment effect heterogeneity has important implications for social
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research and policy. The study of effect heterogeneity can yield valuable insights into
how scarce social resources are distributed in an unequal society (e.g., Brand 2010;
Brand and Xie 2010; Heckman, Humphries, and Veramendi 2018; Heckman, Urzua,
and Vytlacil 2006), how events differentially affect populations with different expecta-
tions of their occurrence (e.g., Brand et al. 2019; Brand and Simon Thomas 2014;
Clark, Knabe, and Rétzel 2010; Turner 1995), and what factors may explain response
heterogeneity, including differential selection (e.g., Heckman and Vytlacil 2007; Zhou
and Xie 2019, 2020). We may want to identify the most responsive subgroups to deter-
mine which individuals benefit most from, or are most harmed by, a treatment. In
some cases, the same disruptive event could have significant consequences for some
populations but less or even no effect among others (Brand et al. 2019). If policy-
makers understand patterns of treatment effect heterogeneity, they can more optimally
assign different treatments to balance competing objectives, such as reducing costs
and maximizing outcomes for targeted groups (Athey and Imbens 2019; Davis and
Heller 2017).

Sociologists routinely partition their samples into subgroups by individual charac-
teristics to explore how the effects of events or interventions vary across the popula-
tion. Researchers often, for example, assume that effects vary by race and gender and
indicators of socioeconomic status, like education or income. Despite their ubiquity,
such interactions may not represent the most meaningful variation in effects or the par-
titions that are most consequential for a relationship of interest. Indeed, many research-
ers report stratified estimates by gender or race when the differences between groups
are not statistically or substantively significant. Long-standing theoretical priors,
strong convention, and biases that one should examine differences by particular char-
acteristics often drive these decisions. The practices researchers use to examine hetero-
geneity via stratified groups or interaction effects also regularly fail to consider the
causal assumptions and possible differential selection processes underlying subpopula-
tion differences in estimated effects. That is, differences in effects across subgroups
could be due to differential response to treatment or due to differential selection on
unobserved variables (Carvalho et al. 2019; Kaufman 2019). Social scientists inter-
ested in causal inference also explore how effects vary by the likelihood of selection
into treatment, including stratified analyses by propensity score strata, nonparametric
methods of effect variation by propensity scores, or exploring variation across different
parameters of interest that indicate selection into treatment (Brand and Simon Thomas
2013; Heckman et al. 2006; Morgan and Winship 2014; Xie, Brand, and Jann 2012).
These latter approaches encourage researchers to interpret effects on the basis of both
observed and unobserved selection into treatment (Brand et al. 2019; Brand and Xie
2010; Heckman and Vytlacil 2007; Zhou and Xie 2019, 2020). In both covariate- and
propensity score—based partitioning methods, however, analysts determine the key
subgroups.

Empirical papers are written largely to suggest that decisions about which subgroups
to explore occur before any data analyses. Indeed, much social scientific inquiry labors
under the delusion that methods of discovery reflect conjectural inspiration. In actual-
ity, it is often difficult to know ex ante the subgroups most responsive to events or
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interventions. Social scientists routinely explore their data, running tens or hundreds of
regressions to determine if subgroups of potential interest show meaningful differences
in effect estimates, and then proceed to selectively report the effect estimates of those
that do (known as p-hacking).! Conventional tests of statistical significance, however,
are performed conditional on a null distribution derived from a hypothesis defined ex
ante. When a large number of tests are performed without multiple testing correction,
or when hypotheses are not prespecified, this type of statistical inference is invalid.
Likewise, if researchers select which interactions to report as a result of exploratory
analyses, and do not draw on cross-validation procedures or multiple-testing adjust-
ments, they are subject to incorrectly rejecting a correct null hypothesis. Such ad hoc
searches for responsive subgroups may reflect noise within the data rather than true
response variation. Studies have shown that p-hacking, along with selective publica-
tion, is a substantial problem leading to misleading conclusions (Brodeur, Cook, and
Heyes 2020). Additionally, undocumented serendipitous manual specification search
procedures lack transparency and reproducibility (Freese and Peterson 2017). Finally,
covariates may be most informative when considered jointly, in complex and nonlinear
ways (e.g., upper income white individuals with strong religious beliefs, rather than
white individuals). It is generally unclear which of the large number of possible covari-
ate thresholds and interactions are best to consider.

We argue for an alternative data-driven approach based on machine learning that
will help uncover essential sources of effect heterogeneity and more transparently
depict the analyses that lead to a focus on particular subgroups. Machine learning
methods, that is, computational and statistical approaches to extracting patterns and
trends from data, are rapidly and dramatically affecting social science methodology
(see recent reviews by Athey 2019; Brand, Koch, and Xu 2020; Molina and Garip
2019). Data-driven machine learning enables researchers to be systematic in the model
selection procedure and fully describe the process by which the model was selected,
which enables reproducibility. These advantages will likely make supervised machine
learning procedures an integral part of empirical sociological practice going forward.

Statisticians and social and computer scientists have recently made progress in mer-
ging machine learning methods and causal inference. Because the goal of accurate pre-
diction of response variables (typical of machine learning) differs from the goal of
obtaining unbiased estimates of causal effects, machine learning methods must be tai-
lored to causal objectives. Recent work has adapted tree-based methods to explore
sources of treatment effect variation. Decision trees are a widely used machine learning
approach that recursively split the data into increasingly smaller subsets where data-
points bear greater similarity (Brand et al. 2020). The resulting hierarchical data struc-
ture can be represented with a tree. These models are attractive for social science
applications because they are simple to understand and interpret. “Causal trees,” intro-
duced in Athey and Imbens (2015, 2016), are decision trees adapted to uncover treat-
ment effect heterogeneity. They allow researchers to identify subpopulations that
respond differently to treatments by searching over high-dimensional functions of cov-
ariates and their interactions. Analysts use this approach to uncover key subpopulations
that they had not prespecified and that may or may not accord with conventional
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sociodemographic partitions and theoretical priors. This method benefits from ease of
use and interpretability and can be an effective tool for sociological inquiry and
discovery.

In this article, we focus on the utility of causal trees for uncovering treatment effect
heterogeneity in observational data. We apply causal trees to a key topic in the social
inequality literature, the distributional effects of college on low-wage work over the
life-course. Within the causal tree and forest literatures, there are limited examples of
how to effectively apply these algorithms to observational data of sociological rele-
vance. We use three different approaches for adjusting for confounding and estimating
effects within leaves of the causal tree: inverse propensity weighting (IPW), nearest
neighbor matching, and mapping estimates from a doubly robust causal forest. In addi-
tion, we consider localized (i.e., partition-specific) propensity score imbalance and
apply localized sensitivity analyses to explore the effect of differential unobserved
confounding. Next, we explore what we learn from causal trees relative to more con-
ventional techniques for identifying treatment effect heterogeneity, namely covariate
and propensity-score stratified effects. In our case study, we conclude that conven-
tional stratified analyses (or interactions) do not identify some of the most responsive,
and theoretically interesting, subgroups highlighted by the causal tree. We encourage
researchers to follow similar practices in their work on exploring variation in sociolo-
gical effects using observational data, and we provide straightforward guidelines and
data visualization techniques by which to do so.

UNCOVERING HETEROGENEOUS TREATMENT EFFECTS

Let us consider a setup with units i = 1, . . . n, a pretreatment covariate vector X, a
response Y;, and a binary treatment indicator W; € {0, 1}. We assume potential out-
comes for each unit (Y,~0, Yﬂ) and define the unit-level treatment effect as

A (1)

i

where we never observe both outcomes: W; = 1 indicates that the unit received the
treatment, and W; = 0 that the unit received the control. Observational data are used to
identify causal associations of social processes that are not easily subject to experi-
mental manipulation. Using observational data, we invoke an “unconfoundedness” or
“selection on observables” assumption that once we condition on X, there are no addi-
tional confounders between the treatment and the outcomes of interest (Imbens and
Rubin 2015):

w (YY)

X, 2)

As it is generally infeasible to condition on X in a fully nonparametric way, methods
for estimating treatment effects under unconfoundedness often entail treating nearby
units in the x-space as matches for the target treated unit. One approach to determine
nearby cases is to use the propensity score to approximate the assignment mechanism
(Imbens and Rubin 2015). A propensity score is the probability of treatment condi-
tional on a set of observed covariates:
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e(x) =pr(W,=1]X, =x). (3)

The propensity score provides a summary measure of estimated selection into treat-
ment. Machine learning methods, including classification and regression trees
(CART), neural networks, and random forests, have increasingly been used to estimate
propensity scores (Lee, Lessler, and Stuart 2009; McCaffrey, Ridgeway, and Morral
2004; Westreich, Lessler, and Funk 2010). If we know e(x), we can estimate average
treatment effects using methods such as IPW or propensity score matching.

Covariate and Propensity Score—Based Partitioning

Our goal is to identify how treatment effects vary across a population. Sociologists
routinely use regression interaction terms or stratified analyses to explore subgroup
variation by selected theoretically motivated covariates. Let us refer to this practice as
covariate partitioning. We define a conditional average treatment effect (CATE) using
covariate partitioning by the average difference in potential outcomes within prespeci-
fied subgroups:

m(x)=E[Y,! = ¥|X =x]. (4)

Such analyses generally amount to an ad hoc partitioning of the sample on the basis of
factors presumed to account for variation (e.g., race, socioeconomic status), or by post
hoc interpretations if variation across groups is serendipitously found. An alternative
approach to assess effect heterogeneity is to partition the sample into strata of the esti-
mated propensity score to determine whether subpopulations with lower or higher esti-
mated probabilities of treatment differ in their treatment effects (Brand and Simon
Thomas 2013; Xie et al. 2012). We define a CATE using propensity score—based parti-
tions as

m(e(x))=E[Y,! — Y le(X,) =e(x)]. (5)

Tree-Based Machine Learning

Machine learning is a computational and statistical approach to extracting patterns and
trends from data (Brand et al. 2020). Supervised learning algorithms learn to predict
response variables from covariates.”> A supervised learning model is first trained in
one data set and then evaluated in another. Model selection is dictated by a model’s
ability to generalize to unseen data in this evaluation set. An overfit model fits too
closely to the training data, explaining idiosyncratic patterns (i.e., noise) in those data
but generalizing poorly to new data. Thus, a learning algorithm must be flexible
enough to fit the training data, yet not so complex that variance is high when fit to
new data. Regularization approaches (e.g., shrinkage penalties) can reduce overfitting
and model complexity to improve generalization. During training, supervised learning
algorithms optimize in-sample performance for a loss function (also called objective
or cost function), often the mean squared error (MSE) for regression tasks. After
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training, researchers use evaluation metrics to assess out-of-sample predictive perfor-
mance of the model.

Decision trees are among the most widely used supervised machine learning algo-
rithms. Decision trees recursively partition the data along covariate thresholds into
increasingly smaller subsets where data bear greater similarity (i.e., have a smaller
variance, entropy, or Gini coefficient) (Breiman et al. 1984). A tree represents the
resulting hierarchical data structure. At each decision, splits are chosen by selecting a
covariate and threshold that minimize the in-sample loss function (e.g., the MSE)
within the remaining subsample of data. Cross-validation is used to select hyperpara-
meters (e.g., for pruning the depth of a tree) that maximize predictive power without
overfitting the data. Decision trees are easy to understand and interpret because they
are “white box” algorithms, yielding a visually interpretable decision process.

As with all algorithms, however, decision trees have disadvantages. At each parti-
tion decision, the tree optimizes the loss function conditional only on the current subset
of data, rather than on the heterogeneity of the complete data set. Although computa-
tionally inexpensive, this “greedy” design choice means that trees are not guaranteed
to find a globally optimal solution. Random forests build on the decision tree algorithm
by averaging over a large number of decision trees (Breiman 2001; Ho 1995). Each
decision tree in the forest is constructed not on the original sample but by repeatedly
resampling training data with replacement and generating a consensus prediction (i.e.,
bootstrap aggregating or “bagging”). Even with bagging, greedy trees tend to use the
same features for similar decision sequences. Random forests thus combine bagging
with a covariate resampling scheme that forces greedy trees to explore different deci-
sion sequences with other covariates. In other words, at each split, a given tree in the
forest can only choose from a random subset of covariates. Random forests have
gained popularity because of their predictive performance and ease of use.

Recursive Partitioning Using Causal Trees

Machine learning methods have been increasingly adapted to objectives for estimating
causal effects in social science applications (for a review, see Athey 2019). This rise
of machine learning to estimate causal effects has been closely trailed by interest in
applying algorithms to estimate heterogeneous causal effects. Some scholars have pro-
posed methods that formulate the search for effect heterogeneity as a variable selection
problem using a least absolute shrinkage and selection operator (LASSO) (Imai and
Ratkovic 2013; Tian et al. 2014). The treatment indicator is interacted with any num-
ber of covariates, and LASSO regularization is used to search for the most predictive
interactions. Other algorithms for fitting heterogeneous response functions include
approaches based on decision trees, such as Bayesian additive regression trees and
Bayesian forests (Chipman, George, and McCulloch 2010; Hill 2011; Taddy et al.
2016) and CART and random forests (Foster, Taylor, and Ruberg 2011; Su et al. 2009;
Zeileis, Hothorn, and Hornik 2008).

We focus here on the sociological utility of the causal tree algorithm developed by
Athey and Imbens (2016) for identifying effect heterogeneity. Athey and Imbens
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extended decision trees to causal settings using a potential outcome approach and pro-
vided a framework for uncovering effect heterogeneity. A tree, or partitioning I1, cor-
responds to a partitioning of the covariate space X. In standard decision trees, each leaf
[ represents the average value of Y for units in that leaf. If there are k covariates and N
observations, we partition the covariate space X into M mutually exclusive leaves
li, . . . Iy where we estimate the outcome for an individual in leaf /;, as the mean of
the outcome for training observations in that leaf. This partitioning process is repeated
until a regularization penalty selected through cross-validation limits the depth of the
tree. The resulting leaves contain a group of units with similar values of Y.

Applying the potential outcome approach to decision trees to instead generate cau-
sal trees requires altering the objective function. In a causal tree, we want the best pre-
diction of the treatment effect 7, not the outcome Y as in the standard regression tree
algorithm. The causal tree algorithm is thus an adaptation of decision trees for causal
inference that attempts to partition the data to minimize heterogeneity in within-leaf
treatment effects (i.e., differences in potential outcomes), rather than minimizing het-
erogeneity within-leaf (observed) outcomes. The difficulty in predicting the leaf-
specific treatment effect is that we have no “ground truth,” or no observed value of
the true treatment effect, as we do when predicting the value of an observed outcome
Y. This issue reflects the fundamental problem of causal inference: we do not observe
the causal effect for any unit.

In addition to adapting the objective to maximize treatment effect heterogeneity
across leaves, Athey and Imbens (2016) advanced “honest” estimation. In honest esti-
mation, we split the sample and use different data for selecting the partitions of the
covariate space X and for estimation of leaf-specific effects. That is, we construct a
tree using a training sample S”, and we estimate leaf-specific treatment effects using
an estimation sample S*°. Notably, the criteria for constructing the partitions and cross-
validation change in anticipation of honest estimation.®> Athey and Imbens introduced
a modified expected MSE for the tree construction loss function that accounts for both
honest estimation and the move to minimizing the MSE of treatment effects rather than
outcomes:

_ 1 1 1 Séf"(l)(l) Sé'r(o)(l)
—EMSE ()= > (X ST M) — (— + — + . (6
(x) N iesr T ( P ) <Ntr Nes) eIl < p(l) 1 —p(l) ( )

where N and N are the sample size of the training sample and estimation sample,
respectively; IT is a potential partition of the covariate space; S2,,,(1)(l) and Sé,,.(o) (1)
are the sample variances for the treated and control units in leaf /, respectively; and
p(0) is the proportion of treated units in leaf /. The first term is the variance of treat-
ment effects across leaves; we prefer leaves with heterogeneous effects. The second
term is the uncertainty about leaf treatment effects; we prefer leaves with good fit, or
leaf-specific effects estimated precisely. Honest estimation accounts for the uncer-
tainty associated with the yet to be estimated leaf-specific treatment effects by includ-
ing a penalty term for leaf-specific variance. As indicated by the sign, there is a trade-
off between these two terms: we prefer tree topologies where leaves capture distinct
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heterogeneous effects, but where the effect is estimated precisely within leaves. We
prune the tree using cross-validation, just as in standard regression trees, but the per-
formance of the tree is based on treatment effect heterogeneity rather than predictive
outcome accuracy. Honest estimation enables standard asymptotic properties in leaf-
specific treatment effects.* We define a CATE in the causal tree as the average differ-
ence in treated and control potential outcomes within leaves:

(s I =E[Y;' — YLX; € I(x; IT)]. (7)

Causal trees can find heterogeneous effects, but they cannot guarantee that con-
founding within leaves is addressed in observational studies. Athey and Imbens (2016)
contended that causal trees can be adapted to observational studies under the assump-
tion of unconfoundedness by adjusting for estimates within leaves. The functions
defined above can be modified with adjustments such that the weighted function bal-
ances the units in the treated and control groups. We use inverse propensity weights in
an effort to ensure that the tree structure represents differential response to treatment
rather than differential confounding by observed covariates. Once constructed, the tree
is a function of covariates. Using a distinct sample to conduct inference, the “problem
reduces to that of estimating treatment effects in each member of a partition of the
covariate space,” in which case we need to “modify the estimates within leaves to
remove the bias from simple comparisons of treated and control units” (Athey and
Imbens 2016:7358-59; see also Hirano, Imbens, and Ridder 2003). For demonstration,
we use IPW, nearest neighbor matching, and a doubly robust causal forest (generalized
random forest [grf]), where we estimate one causal forest and average the estimated
treatment effects within partitions.” We assess propensity score balance within each
partition to determine whether we have differential imbalance and whether our adjust-
ment strategy succeeds in balancing observed selection into treatment.

Our detection of treatment effect heterogeneity hinges on our input covariates. Input
covariates should be pretreatment, that is, potential moderators and not post-treatment
mediators. We include all covariates used in estimation of the propensity of treatment.
Following VanderWeele (2019), we include covariates presumed to cause the treat-
ment, the outcome, or both, and any proxy for an unmeasured variable that is a com-
mon cause of both the treatment and the outcome. We exclude known instrumental
variables. And following Hahn, Murray, and Carvalho (2020), we include the propen-
sity score as one of the input covariates. As Imbens and Rubin (2015) outlined in their
iterative procedure, we also exclude variables that do not add to the estimation of the
likelihood of treatment. Fewer input covariates will result in less precise detection of
heterogeneity, but even a small set can yield informative patterns.®

Our approach for using a causal tree to uncover treatment effect heterogeneity with
observational data proceeds as follows: (1) input data with selected covariates; (2)
draw a random subsample for training S” and retain a holdout sample for estimation
S; (3) split the sample for k-fold cross-validation to regularize the tree in S”; (4) grow
a tree via recursive partitioning in S” that maximizes heterogeneity across leaves and
minimizes heterogeneity within leaves using adjustment (i.e., IPW); (5) feed the esti-
mation sample into the leaves; and (6) estimate leaf-specific treatment effects in $
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Figure 1. Causal tree work flow.

Note: We estimate leaf-specific treatment effects using inverse propensity weighting, nearest neighbor
matching with four control units per treated unit on the linearized propensity score, and causal forests
(grf). CATE = conditional average treatment effect.

using adjustment strategies, such as IPW, matching, and causal forests (grf). Figure 1
depicts this causal tree work flow.

Causal trees benefit from empirical discovery, important statistical properties, and
interpretability. In contrast to methods that treat heterogeneity as a variable selection
problem, trees search over possible combinations and thresholds of pretreatment cov-
ariates. In so doing, we uncover responsive subpopulations that we may not have con-
sidered prior to analysis. Moreover, in contrast to approaches that split the study
population on the basis of outcome predictions, causal trees are optimized for treat-
ment effect estimation within partitions of the covariate space and use sample splitting
for “honest estimation” to provide leaf-specific, asymptotically unbiased estimates of
average treatment effects with confidence intervals. In addition to these statistical
guarantees, the causal tree is a particularly attractive tool for social science applica-
tions because the criteria used to make partitions are transparent to the end user. That
is, the ability to plot the decision pathways of a causal tree renders it a powerful tool
not just for uncovering treatment effect heterogeneity but also for interpreting and
visualizing that heterogeneity.

As stated earlier, a disadvantage of single decision trees is that greedy optimization
means the reported tree may not be the only valid tree or even the globally optimal
tree. Different sample splits can result in different partitions and tree structures. To
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address these issues, Wager and Athey (2018) propose a causal forest for estimating
treatment effects in the potential outcome framework assuming unconfoundedness
with asymptotic guarantees. Several recent machine learning methods also flexibly
combine supervised learning of the response variable with supervised learning of the
propensity score to estimate average treatment effects. For example, Nie and Wager
(2019) described a general class of two-step algorithms for heterogeneous treatment
effects estimation in observational studies, and Athey, Tibshirani, and Wager (2019)
proposed a grf that generates a doubly robust causal forest. This approach fits two sep-
arate regression forests to estimate e(-) and 7(-) and then uses predictions from these
two first-stage forests to grow a causal forest. We hereafter refer to this approach as a
doubly robust causal forest or grf.

Causal forests (grf) have attractive properties for estimating heterogenous response
functions yet lack the benefit of interpretability and identification of responsive sub-
groups. Although a causal forest (grf) does not give us a single, easily interpretable
tree, we can generate useful metrics of heterogeneity, including an omnibus test of het-
erogeneity. We can also plot covariate importance by assessing the covariates chosen
most often by the causal forest algorithm (i.e., a count of the proportion of splits on
the variable of interest) and thus reveal the strongest determinants of the structure of
the trees in the forest (O’Neill and Weeks 2018). Moreover, we can use the causal for-
est (grf) algorithm to estimate CATEs, including CATEs within partitions defined by
covariates, propensity scores, or causal trees.

Overlap and Unconfoundedness

Estimating causal effects using observational data hinges on the overlap and uncon-
foundedness assumptions (D’ Amour et al. 2020). Treatment effects are unidentified in
regions that have no overlap. Matching methods restrict inference to the region of over-
lap, or common support; that is, we discard units that do not match, or the treated units
with no comparable control units and the controls units with no comparable treated
units, on the basis of observed covariates. Yet estimated treatment effects may be
biased by unobserved covariates. Whether unconfoundedness is a reasonable assump-
tion is a substantive issue, which depends on the quality of the covariates in capturing
potential selection bias. Yet we recognize that even with a rich set of pretreatment cov-
ariates, potential confounders remain. Partitioning by propensity scores, selected cov-
ariates, or leaves within causal trees may involve differential selection bias. Because
partitioning by propensity scores involves estimating subpopulation treatment effects
by observed selection into treatment, the approach encourages attention to potential
violations to the unconfoundedness assumption across partitions (see Zhou and Xie
2019, 2020). However, researchers evaluating covariate-stratified estimated treatment
effects often fail to consider the possibility that unobserved confounding may differ
across subgroups.

Here we relax the unconfoundedness assumption and conduct sensitivity analyses
for differential hidden confounding within partitions defined by propensity scores, cov-
ariates, and leaves within the causal tree (Rosenbaum 2002). We subtract a bias factor
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from the point estimate and confidence interval of the treatment effects obtained under
unconfoundedness (Arah 2017; Gangl 2013; VanderWeele and Arah 2011). The bias
term is equal to the product of two parameters:

B=yA, (8)
where
y=E(Y|U=1,W=w,X) —E(Y|U=0,W=w,X) (9)
and
A=P(U=1|W=1,X)— P{U=0|W=0,X). (10)

That is, y is the mean difference in the outcome associated with a unit change in an
unobserved binary confounder, U, and A is the mean difference in the unobserved con-
founder between treated and control units. Alternative approaches for sensitivity analy-
ses are also possible (e.g., Cinelli and Hazlett 2020), but they follow the same general
logic. Other strategies may more explicitly consider unobserved confounding that
affects our conclusions as to treatment effect heterogeneity.

EMPIRICAL APPLICATION

To demonstrate the approach, we assess heterogeneity in the effect of college on reduc-
ing low-wage work over a career. The effects of college on wages is a key area of inter-
est in social inequality research (Hout 2012). By focusing on low-wage work, we shift
attention to how college may circumvent disadvantaged labor market outcomes for par-
ticular subpopulations. Some rhetoric suggests limiting college for segments of the
population, particularly more disadvantaged students on the margin of school continua-
tion (e.g., Caplan 2018). If we observe benefits for disadvantaged students that match,
or even exceed, those of more traditional college students, we gain insight into whether
college pays off for this subpopulation of potential college-goers. We draw on observa-
tional data and a highly selective treatment condition, completing college, to illustrate
the use of causal trees and forests with observational data. We address four research
questions: (1) Does college reduce the proportion of time in low-wage work over a
career? (2) Does the effect of college on low-wage work vary by propensity score strata
and by key covariates that influence the likelihood of completing college (i.e., parental
income, mother’s education, measured ability, and race)? (3) Does the effect of college
on low-wage work vary by subgroups we had not considered? and (4) How sensitive
are the treatment effect estimates to unobserved confounding across partitions?

Our analysis proceeds as follows. First, we present descriptive statistics of the full
sample. Second, we assess average effects of college on reducing low-wage work using
three adjustment strategies: [PW, matching, and causal forest (grf). Third, we evaluate
heterogeneous effects of college on reducing low-wage work for subgroups defined by
the propensity of college, parental income, mother’s education, measured ability, and
race, again using IPW, matching, and causal forest (grf). We estimate one causal forest
for the full population, and then average those estimates within partitions. We compare
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balance metrics across partitions. Fourth, we evaluate heterogeneous effects for sub-
groups identified by the causal tree, using the same adjustment strategies and balance
metrics. We offer descriptive statistics to help interpret the subgroups identified by the
causal tree. We also discuss tree stability and offer a covariate importance plot from a
causal forest. Fifth, we assess the sensitivity of partition-specific effect estimates to
unobserved confounding.

Data and Descriptive Statistics

We use data from the Bureau of Labor Statistics 1979 to 2014 waves of the National
Longitudinal Survey of Youth 1979 cohort. These nationally representative longitudi-
nal data provide information on respondents’ sociodemographic background, achieve-
ment, skills, educational attainment, and long-term earnings trajectories from early to
late career; the data have been widely used to assess the effects of college on wages.
We restrict the sample to individuals who were 14 to 17 years old at the baseline sur-
vey in 1979 (n = 5,582) and who had completed at least the 12th grade (n = 4,548).
These sample restrictions ensure that all variables we use to predict college are mea-
sured precollege and that we compare college completers with those who completed at
least a high school education. About one fifth of the sample completed college by age
25. We focus on the proportion of time spent in a low-wage job from 1990 to 2014,
when respondents were roughly between the ages of 25 and 50. We measure low-wage
work as less than two thirds of the median hourly wage for that year (Presser and Ward
2011). In Table 1, we report covariate means by college completion. We use covariates
known to affect the likelihood of college completion, including measures of race, resi-
dence, parents’ income, parents’ education, father’s occupation, family structure, cog-
nitive ability,” college-preparatory program, psychosocial skills, juvenile delinquency,
educational expectations and aspirations, school characteristics, and family formation.
Descriptive statistics on our precollege covariates suggest well-documented socioeco-
nomic differences in educational attainment.®

Average Effects of College on Low-Wage Work

In Table 2, we report estimates of the average effect of college completion on propor-
tion of time in low-wage work over a career. We compare the unadjusted estimate to
estimates adjusted by IPW, nearest neighbor matching on the basis of the linear pro-
pensity score (i.e., logit(é(x)))” with four control units per treated unit, and causal for-
ests (grf).'° To estimate the propensity of college, we use a random forest. We include
the measures described in Table 1.'' We find that college completion is associated with
a significant 22 percentage point reduction in the proportion of time spent in a low-
wage job across a career, an estimate that is reduced to about 19 percent using IPW
and about 17.5 percent using matching and causal forest (grf). Appendix Figure Al is
an algorithm display detailing the steps of the causal forest estimation for the estimate
reported in Table 2. More detailed code is available on Github. We perform an omni-
bus test for treatment effect heterogeneity, indicated by the line in Appendix Figure A1l
for differential forest prediction, which suggests evidence at the p = .07 level for
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Table 1. Descriptive Statistics of Precollege Characteristics and Wage Outcome

Non—College Graduates College Graduates

Mean S.D. Mean S.D.

Sociodemographic factors

Male (binary 0/1) 497 — .504 —

Black (binary 0/1) .160 — .069 —

Hispanic (binary 0/1) .066 — .026 —

Southern residence at age 14 (binary 0/1) 325 — .029 —

Rural residence at age 14 (binary 0/1) 239 — .186 —
Family background factors

Parents’ household income ($100s) 190.959 110.173 286.006  150.934

(continuous 0 to 75)

Fathers’ highest education (0 to 20) 11.389 3.114 14.234 3.240

Mothers’ highest education (0 to 20) 11.345 2.412 13.317 2.437

Father upper-white-collar occupation (0/1) 175 — .507 —

Two-parent family at age 14 (binary 0/1) 712 — .847 —

Sibship size (continuous 0 to 19) 3.296 2.262 2.534 1.641
Cognitive and psychosocial factors

Cognitive ability ASVAB (continuous —3 to 3) —125 .673 .606 .553

High school college-preparatory program (0/1) 236 — 485 —

Rotter locus of control scale (continuous 4 to 16) 9.031 2.259 8.124 2.139

Juvenile delinquency activity scale (0 to 1) 815 .389 714 452

Educational expectations (binary 0/1) .309 — .825 —

Educational aspirations (binary 0/1) 434 — .879 —

Friends’ educational aspirations (binary 0/1) 358 — 740 —
School factors

School disadvantage scale (0 to 99) 21.684 17.859 12.742 12.638
Family formation factors

Marital status at age 18 (binary 0/1) .068 — .003 —

Had a child by age 18 (binary 0/1) .061 — .002 —
Wage outcome

Proportion of time in low-wage work 398 363 207 246

Weighted sample proportion 81 .19

n 3,531 851

Note: Data are from the National Longitudinal Survey of Youth (NLSY) 1979 cohort. The sample is restricted to
individuals who were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed at least the
12th grade (n = 4,548), and who had no missing data on the outcome (n = 4,382). College completion is measured as
a 4-year degree completed by age 25. All descriptive statistics are weighted by the NLSY sample weight. ASVAB =
Armed Services Vocational Aptitude Battery.

heterogeneity. Although this test does not indicate evidence for heterogeneity at the
conventional .05 level, it remains plausible that the agnostic omnibus test is not captur-
ing important heterogeneity along specific partitions of the covariate space (Athey and
Wager 2019). We next assess possible sources of heterogeneity.

Heterogeneous Effects of College on Low-Wage Work: Propensity Score and
Covariate Partitioning

We examine stratified effects of college completion by propensity score strata and sev-
eral a priori theoretically motivated covariates: parental income, mother’s education,
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Table 2. Effect of College Completion on Proportion of Time in Low-Wage Work

Wage Outcome Unadjusted IPW NN Matching Causal Forest (grf)

Proportion of time in ~ —223*** (.013)  —189*** ((016)  —174*** (.023) —176%%* (.024)
low-wage work

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to individuals
who were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed at least the 12th grade (n
= 4,548), and who had no missing data on the outcome (n = 4,382). College completion is measured as a 4-year
degree completed by age 25. Estimates are based on IPW, NN matching with four control units per treated unit on
the linearized propensity score, and on a causal forest (grf). grf = generalized random forest; IPW = inverse
propensity weighting; NN = nearest neighbor.

**%p < .001 (two-tailed tests).

ability, and race. We construct three propensity score strata to assess effects for low-,
middle-, and high-propensity college-goers, where low ranges from 0 to less than .2,
middle from .2 to less than .5, and high from .5 to 1. In addition, we partition by cov-
ariates that strongly influence selection into college and indicate levels of socioeco-
nomic advantage: parental income, mother’s education, measured ability, and race.
We divide parental income and ability into terciles of the distributions; divide mother’s
education into categories of less than high school, high school degree, and some col-
lege or more; and divide respondents’ race into black, Hispanic, and white.

Figure 2 is a heatmap of estimated effects based on stratified models using [PW,
where blue indicates larger treatment effects (i.e., larger negative effects indicating
reductions in the proportion of time in low-wage work associated with a college
degree) and yellow indicates smaller treatment effects (i.e., less negative effects, near-
ing zero). Table 3 reports estimated effects using [IPW, matching, and a causal forest
(grf); that is, we generate a causal forest (grf) and then average the estimated treatment
effects within each partition. As shown in Figure 2 and Table 3, we find the largest
effects of college on reducing low-wage work for respondents with a low propensity
to complete college, low ability, low parental income, low mother’s education, and for
black and Hispanic individuals. The effects of college on low-wage work for the most
advantaged individuals are significant but smaller.'* For example, we find a more than
20 percentage point lower proportion of time in low-wage work for college-educated
workers with a low propensity of college versus a 10 percentage point lower propor-
tion for those with a high propensity. The IPW estimates are somewhat larger than for
matching and causal forest (grf), but the estimates are very similar for matching and
causal forest (grf)."

Next we attend to possible differential violations of covariate balance across sub-
groups. Figure 3 provides balance metrics defined by standardized mean propensity
score differences across each of our partitions defined by propensity scores, parental
income, mother’s education, ability, and race. If the numbers are close to zero, we
achieve balance across covariates. We report raw differences and the balance achieved
by causal forest (grf) estimation. In every case, we substantially reduce the raw imbal-
ance by grf. The remaining imbalance is not zero, but it is generally no greater in the
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Figure 2. Covariate and propensity score—based partitioning: effect of college completion on
the proportion of time in low-wage work.

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to
individuals who were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed
at least the 12th grade (n = 4,548), and who had no missing data on the outcome (n = 4,382). College
completion is measured as a 4-year degree completed by age 25. Estimated treatment effects are based
on inverse propensity weighting. Standard errors are in parentheses. In the online version, blue indicates
largest treatment effects, and yellow indicates smallest treatment effects. HS = high school.

subgroups in which we observe large effects than in the subgroups in which we observe
smaller effects. For example, the bias is close to zero for black respondents but rela-
tively larger for Hispanic and white respondents. It is larger in the high propensity
score and socioeconomic strata than in the low strata. Thus, although we are concerned
about remaining imbalance, we are less concerned about differential imbalance that
explains the patterns in heterogenous effects.

In the Appendix Figure Al algorithm, we also report the best linear prediction of
the CATE onto the propensity score from the causal forest. This suggests the effect of
college on reducing low-wage work significantly decreases as the propensity of college
increases, from a roughly 20 percentage point reduction for the lowest propensity of
college to no effect for individuals with the highest propensity. R and Stata packages
are available to generate these results. We also developed several possible causal tree
visualizations that researchers can use, including an interactive tree (for our
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Balance Metrics by College Completion for Covariate and Propensity Score-Based Partitions
Outcome: lowwaprop, Treatment: compcoll25

Standardized Mean Differences

Figure 3. Propensity score balance metrics by covariate and propensity score—based
partitioning.

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to
individuals who were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed
at least the 12th grade (n = 4,548) and had no missing data on the outcome (n = 4,382). College
completion is measured as a 4-year degree completed by age 25. The x-axis indicates standardized mean
propensity score differences for raw and generalized random forest (grf) adjusted samples within each
partition. The y-axis indicates the partition. HS = high school.

application, see https://htetree.shinyapps.io/hte_tree_ipw/, developed in collaboration
with Stephanie Yee and Tony Chu of R2D3, http://www.r2d3.us).

Heterogeneous Effects of College on Low-Wage Work: Recursive Partitioning
Using Causal Trees

Figure 4 and Table 4 depict results of the causal tree for the effect of college comple-
tion on the proportion of time in low-wage work. The estimates displayed in the leaves
of Figure 4 are based on IPW.'* Table 4 reports alternative estimates using nearest
neighbor matching and a causal forest (grf). We include the 22 covariates described in
Table 1 as well as the estimated propensity score as input splitting covariates, using
the criteria to select covariates described earlier. We limit the depth of the tree by
requiring at least 20 treated and 20 control units per leaf.'> Researchers may use a
larger number of treated and control observations, such as 30 or 50, depending on
sample size. Holding sample size constant, a larger minimum number of units will
limit the depth of the tree and detection of heterogeneity. A larger sample size will
enable more precise effect estimates within partitions and possible better adjustment
of confounding. With more cases, researchers may use a larger number of control than
treated observations to ensure better matches within partitions. We use 50 percent of
the sample to train the data and grow the tree structure, and we reserve the remaining
50 percent of the sample as a holdout sample for estimation of leaf-specific treatment
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Figure 4. Recursive partitioning using a causal tree: effect of college completion on the
proportion of time in low-wage work.

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to
individuals who were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed
at least the 12th grade (n = 4,548), and who had no missing data on the outcome (n = 4,382). College
completion is measured as a 4-year degree completed by age 25. Treatment effects are estimated by
inverse propensity weighting. Standard errors are in parentheses. Blue indicates largest treatment effects,
and yellow indicates smallest treatment effects. ASVAB = Armed Services Vocational Aptitude Battery;
HTE = heterogeneous treatment effect.

effects within that tree. The causal tree is color coded to indicate the size of the associ-
ation, with blue indicating larger (negative) effects and yellow indicating smaller
effects (nearing zero) (color coding in the online version). The color coding aligns
with the results we report in Figure 2. As with the covariate and propensity partition-
ing, we estimate one causal forest for the full population and then average those esti-
mates within the partitions. Appendix Figure A2 shows the baseline steps of the
causal tree estimation, with more detailed code leading to the results in Table 4 (also
available on Github).

The primary division depicted in Figure 4 occurs for mother’s education, with indi-
viduals whose mothers had less than a high school degree having larger negative
effects of college on time spent in low-wage work. Individuals whose mothers have
less than a high school degree have a 23 percentage point reduction in low-wage work,
compared with a 12 percentage point reduction among those whose mothers have at
least a high school degree. The largest effects accrue to respondents whose mothers
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Table 4. Effects of College Completion on Proportion of Time in Low-Wage Work:
Recursive Partitioning Causal Tree

IPW NN Matching Causal Forest (grf) n

L1: mothers’ education < 12 —.225%%* —26]%** —220%** 1,832
(.041) (.034) (.042)

L2: L1 & number of siblings > 2 —.264%** —20]*** —25]%** 1,645
(.041) (.034) (.045)

L3: L2 & low control > 10 —.343%** —372%** —318*** 800
(.045) (.056) (.063)

L4: L2 & low control < 10 —.189%* —099 —176%** 845
(.068) (.150) (.064)

L5: L4 & female —255%* —263** —179%* 425
(.079) (.091) (.065)

L6: L4 & male —133 —130 —170%* 420
.099 (.142) (.098)

L7: L1 & number of siblings <2  —037 110 —043 187
11 .070) (.123)

L8: mother’s education > 12 —. 124%** —. 140*** — 150%* 2,550
(.021) (.023) (.029)

L9: L8 & ASVAB scale < —44 —347*** —381*** —355*% 490
(.049) (.050) (.102)

L10: L8 & ASVAB scale >—44  —086*** —.089*** —100* 2,060
(.022) (.018) (.026)

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to individuals
who were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed at least the 12th grade
(n = 4,548), and who had no missing data on the outcome (n = 4,382). College completion is measured as a 4-year
degree completed by age 25. Estimates are based on IPW, NN matching with four control units per treated unit on
the linearized propensity score, and causal forest (grf) estimates applied to each partition. ASVAB = Armed Services
Vocational Aptitude Battery; grf = generalized random forest; IPW = inverse propensity weighting; L = leaf;, NN =
nearest neighbor. Shading indicates instability in the partitions.

*p < .05, ¥*p < .01, and ***p < .001 (two-tailed tests).

did not complete high school, who grew up in large families, and who have low social
control (i.e., in the top quartile of the low control distribution): a 34 percentage point
reduction in low-wage work. For individuals with mothers with at least a high school
degree and low ability (in the bottom quartile of the ability distribution), we see a
similarly large effect (a 35 percentage point reduction). For respondents with less edu-
cated mothers who grew up in large families, yet had higher social control (below the
top quartile of the low control distribution), we find larger effects for women than for
men (26 percentage point lower proportion vs. a 13 percentage point lower propor-
tion). We find substantially smaller effects for individuals whose mothers had less than
a high school education but who came from smaller families. Respondents with moth-
ers with at least a high school degree and relatively higher ability (above the bottom
quartile of the ability distribution) have the smallest effect (a 9 percentage point reduc-
tion in low-wage work).'® Our substantive conclusions remain largely the same using
alternative adjustment strategies (see Table 4).

Figure 5 provides balance metrics defined by standardized mean differences in pro-
pensity scores across each of our partitions defined by our causal tree. Again, we report
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Balance Metrics by College Completion for Tree-Based Partitions
Outcome: lowwaprop, Treatment: compcoll25
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Figure 5. Propensity score balance metrics by recursive partitioning using a causal tree.

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to
individuals who were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed
at least the 12th grade (n = 4,548), and who had no missing data on the outcome (n = 4,382). College
completion is measured as a 4-year degree completed by age 25. The x-axis indicates standardized mean
propensity score differences for raw and generalized random forest (grf) adjusted samples within each
partition. The y-axis indicates the partition.

the raw imbalance and the balance achieved by causal forest (grf) estimation. We sub-
stantially reduce the raw imbalance across leaves by our grf estimates. Leaves 3 and 9
are the most responsive partitions, yet the imbalance is no different here than in the less
responsive partitions. Thus, again, although we are concerned about remaining imbal-
ance, we are less concerned about differential imbalance that explains the patterns in
heterogenous effects. Appendix Table A2 provides tests of significance across leaves,
suggesting significant differences across most leaves.

As noted earlier, tree stability is a concern. That is, we may get different trees if we
generate different random splits of the training and test data. To test tree structure sta-
bility, we generate 100 causal trees with different random splits of the training and test
data. We find that 95 percent of the time we get the tree structure we present above
with only one modification to the depth; that is, 36 percent of the time we do not see
the split on gender. We thus shade the gender-partitioned estimates in Table 4. We get
two additional trees accounting for the remaining 5 percent of trees. Thus, the tree we
present in Figure 4 appears to be reasonably stable in our application.

We also run causal forests (grf) with 4,000 trees. Figure 6 is a plot of covariate
importance from a causal forest (grf), which can yield insight into how the ensemble
of trees is making decisions. The x-axis indicates relative importance scores; we are
concerned only with the relative strength across covariates. The covariates displayed at
the top of the plot are the strongest determinants of generating the structure of the trees
in the forest. The results suggest that parental income, ability, propensity of college,
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Figure 6. Covariate importance plot based on a causal forest (generalized random forest) of
the effect of college completion on the proportion of time in low-wage work.

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to
individuals who were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed
at least the 12th grade (n = 4,548), and who had no missing data on the outcome (n = 4,382). College
completion is measured as a 4-year degree completed by age 25. The x-axis indicates relative
importance scores; we are concerned only with the relative strength across covariates. The covariates
displayed at the top of the plot are the strongest determinants of generating the structure of the trees in
the forest. ASVAB = Armed Services Vocational Aptitude Battery.

and father’s education are most important. School disadvantage, mother’s education,
social control, and family size follow, with the remaining variables having minimal
relative importance in terms of determining the structure of the trees. The covariates
that generate the primary splits in the causal tree in Figure 6 are a subset of those iden-
tified here. This gives us confidence that the covariates selected by the tree are key
axes of heterogeneity.

In summary, more disadvantaged subpopulations, or those on the margin of school
continuation, experience larger effects of college on reducing low-wage work. We
identify this pattern across the various partitioning strategies. Yet the groups identified
by the causal tree are not necessarily those we would identify by our theoretical
priors. For example, although we consider strata on the basis of mother’s education in
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Table 3, we did not specifically consider individuals with mothers without a high
school degree and who grew up in large families and had low social control, nor those
with high school-educated mothers yet low ability.!” We should not go too far, how-
ever, in interpreting the selection of variables used for the splits (Athey and Imbens
2019). Instead, we should focus on the populations identified by the splits.

Table 5 provides leaf-specific selected covariate descriptive statistics. We report the
most important covariates as defined by the covariate importance plot in Figure 6. Let
us consider the subgroups in leaves 3 and 9 with the largest estimated treatment effects,
that is, those whose mothers did not complete high school and who grew up in large
families and had low social control (leaf 3), and those with more educated mothers
who had low measured cognitive ability (leaf 9). In leaf 3, parental income is below
average, school disadvantage is above average, and measured cognitive ability is below
average. Fathers and mothers have below average levels of education. Three fourths of
fathers have less than a high school degree, and all mothers have less than a high
school degree (by definition of the leaf). About two thirds are black or Hispanic. In leaf
9, parental income is about average, school disadvantage is average, and measured
ability is below average (more than a standard deviation below). Father’s education is
about average, with three fourths having a high school degree or more, and mother’s
education is above average, with all mothers (by definition of the leaf) holding a high
school degree. About one fifth of mothers and fathers attended some college. More
than two thirds are white. In both leaves 3 and 9, respondents report low social control,
but particularly in leaf 3 (which is defined by low control). We thus have two distinct
responsive subpopulations: individuals who are socioeconomically disadvantaged (i.e.,
leaf 3) and individuals with average socioeconomic status and below average measured
cognitive ability (i.e., leaf 9). Almost 95 percent have a low propensity for college (in
the bottom third of the propensity score distribution) in both leaves 3 and 9. Propensity
of college is a key summary measure of responsiveness to college in reducing low-
wage work.

Leaves 7 and 10 are the least responsive subgroups. Individuals in leaf 10 have high
levels of parental income, low levels of school disadvantage, high ability, and edu-
cated parents. More than 40 percent have college-educated fathers, and one third have
college-educated mothers. Individuals in leaf 10 have the highest levels of advantage
and the highest propensity of college among the partitioned subgroups. These individ-
uals are most likely not at risk for working in low-wage jobs whether or not they
attend and complete college. They can draw on their advantaged background to avoid
such employment. Individuals in leaf 7 have average levels of parental income, school
disadvantage, and ability, and below average levels of parent’s education, but they
tend to be only children. These respondents may also be at a low risk for low-wage
work if parents are more likely to assist an only child in securing employment.

Sensitivity Analyses

Tables 6 and 7 report sensitivity bounds on the estimated causal forest (grf) coefficients
reported in Tables 3 and 4, respectively. The effect reaches nonsignificance when the
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Table 7. Sensitivity Parameters for Recursive Partitioning Results

Sensitivity Parameters Treatment Effects
Partitions 0% A CATE CI
L1: mothers’ education < 12 10% —10% —-210 (—293 to—127)
20% —10% —-200 (=283 to—117)
40% —10% —180 (=263 to —097)
L2: L1 & number of siblings > 2 10% —10% —241 (—329 to —.153)
20% —10% -231 (—319 to —143)
40% —10% —211 (—299 to —123)
L3: L2 & low control > 10 10% —10% —-308 (—431 to—185)
20% —10% —298 (—421 to —175)
40% —10% —278 (—401 to —155)
L4: L2 & low control < 10 10% —10% —166 (=291 to—041)
20% —10% —156  (—281 to —.031)
40% —10% —-136 (=261 to—.011)
L5: L4 & female 10% —10% —160 (=352 to0 .032)
20% —10% —150 (=342 to0 .042)
40% —10% —130 (=322 to0 .062)
L6: L4 & male 10% —10% 133 (427 to —.162)
20% —10% 143 (.437 to —.152)
40% —10% 163 (.457 to —132)
L7: L1 & number of siblings < 2 10% —10% —033 (=273 to .207)
20% —10% —023 (—263 to .217)
40% —10% —003 (—.243 to .237)
L8: mother’s education > 12 10% —10% —140 (—197 to —083)
20% —10% —130  (—187 to —073)
40% —10% —110  (—167 to —053)
L9: L8 & ASVAB scale < —44 10% —10% —345 (—546 to —.145)
20% —10% —335 (—536 to —135)
40% —10% —315 (=516 to—115)
L10: L8 & ASVAB scale >—44 10% —10% —090  (—140 to —039)
20% —10% —080 (130 to —029)
40% —10% —060  (—110 to—009)

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to individuals
who were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed at least the 12th grade
(n =4,548), and who had no missing data on the outcome (n = 4,382). College completion is measured as a 4-year
degree completed by age 25. ASVAB = Armed Services Vocational Aptitude Battery; CATE = conditional average
treatment effect; CI = confidence interval; L = leaf.

unobserved confounder has a sizable difference between individuals who do and do
not complete college (A) or a strong effect on the proportion of time in low-wage work
(y). Suppose, for example, that idleness, unobserved in our data, increases the time in
low-wage work over a career, and is lower among individuals who complete college
than among those who do not. When A equals —10 percent, we assume that the preva-
lence of idle individuals is 10 percent lower in the college-educated group than in the
non-college-educated group. When vy equals 10 percent, we assume that idle individu-
als have a 10 percentage point higher level of low-wage work than those who are not
idle (all else equal). We let the values of y range from 10 to 40 percent and fix the
value of A at—10 percent.'®
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In Table 6, the effect of college on reducing low-wage work remains significant for
the most disadvantaged college completers at each value we consider, even when
unobserved differences have a substantial impact on low-wage work (y=40) and the
prevalence of the unobserved factor differs between college graduates and non—college
graduates by 10 percent (A= — 10). Estimates also remain significant for the middle
propensity score, parental income, and middle and high mother’s education subpopula-
tions, and for Hispanic and white respondents. Effects among individuals with a high
propensity of college and high parental income are more sensitive to confounding
when y=40. Table 7 provides sensitivity bounds on the estimated effects across leaves
defined by the causal tree. The sizable leaf-specific estimates associated with the most
responsive subpopulations are robust to unobserved confounding. For example, the
largest estimate in leaf 3 remains significant even if the confounding variable reduced
low-wage work by 40 percent (7y) and differed by 10 percent among college graduates
and non—college graduates (A).

DISCUSSION

Heterogeneity in response to an event or intervention is to be expected. We cannot
reasonably presume that individuals respond identically to life events. We aim to
understand heterogeneity, both in the characteristics that predispose some groups to
experience particular events and how those characteristics govern differential response
to events. One long-standing approach in sociology is to determine subgroups of inter-
est who we theorize should respond differently and then test those possibilities in our
data. There are many advantages to doing so, as we may have theoretical interest in
whether black or white individuals, or men or women, or people who grew up in low-
income versus high-income families are differentially affected by particular events.
For example, we may want to know whether low-income students benefit more or less
from college than high-income students, because our policies target recruitment of stu-
dents by social class categories and we want to estimate the expected gain. We may
likewise want to know whether students with a low estimated propensity of college
benefit more or less, as such knowledge of the stratification process sheds light on the
consequences of the unequal distribution of scarce resources. Such analyses also give
us insight into how selection into treatments may confound the relationships we
observe across subgroups.

Yet social scientists do not always know a priori which characteristics govern the
distribution of responses. Often our data can tell us something we had not thought of
before performing the analyses. Indeed, a great deal of the excitement of empirical
social scientific work lies in unexpected discovery. Data-driven discoveries are com-
mon, but the analyses by which sociologists typically go about them are problematic.
Indeed, researchers may estimate tens or hundreds of alternative specifications behind
the scenes, without an established way to correct for the specification search process.
It is difficult to be systematic or comprehensive in specifications when proceeding in
an ad hoc way. Such procedures result in p-hacking and lack transparency and repro-
ducibility. Most sociological analyses that explore covariate interactions also neglect
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how combinations of covariates and nonlinear interactions may best identify key sub-
populations of interest. These analyses are thus limited in the subgroups considered,
and they seldom move us beyond our expectations, and inherent biases, to consider
new meaningful groups.

In this article, we used causal trees, a tree-based machine learning algorithm, to
uncover sources of treatment effect heterogeneity. Uncovering heterogeneity using
decision trees represents an especially promising use of machine learning methods for
causal inference (Athey and Imbens 2017). Causal trees allow researchers to identify
subpopulations that respond differently to treatments by searching over high-
dimensional functions of covariates and their interactions. The algorithm partitions the
data to minimize heterogeneity in within-leaf treatment effects. We used honest esti-
mation, splitting the sample into subsamples to determine the model and estimating
effects. Strategies such as these will increasingly be needed to justify analytic deci-
sions in applied work (Athey 2019). Applying causal trees to observational data, we
demonstrated how to use various adjustment strategies to address confounding within
leaves, including IPW, nearest neighbor matching, and doubly robust causal forests.
Other covariate adjustment strategies are possible to estimate leaf-specific effects. We
compared results based on causal trees with traditional strategies based on conven-
tional covariate and propensity score partitioning.

Our empirical application addresses a central question in research on social inequal-
ity, the effect of college on wages. We identified sources of heterogeneity in effects
and unanticipated subgroups of notable interest. For example, instead of simply focus-
ing on effect differences by mother’s education, as we did in our covariate partitioning,
our recursive partitioning approach based on causal trees revealed a particularly
responsive subgroup of individuals whose mothers had less than a high school degree,
who grew up in large families, and who had low social control. Moreover, not all indi-
viduals whose mothers had more than a high school degree were equally less respon-
sive. Those with low measured cognitive ability were particularly responsive. We thus
identified responsive subgroups with different characteristics. The responsive sub-
groups identified by the causal tree, however, shared a low propensity of college. We
also described distinct subgroups whose likelihood of low-wage work was less affected
by college, that is, individuals with high levels of socioeconomic advantage and people
with average background characteristics yet low levels of parental education.

The automation of some empirical tasks does not absolve our responsibility to care-
fully consider covariate imbalance, confounding, and the interpretation of estimated
effects. In estimating heterogeneous treatment effects under unconfoundedness, we
assume that the treatment effect varies by the subgroups identified and not by unob-
served factors. We also face the possibility that the unconfoundedness assumption does
not hold in our analyses, and that effects may be differentially biased across partitioned
subgroups. In our application, for example, we know that continuing schooling is a
highly selective process. Of the possible unobserved factors, some are systematic,
reflecting individuals’ resistance to continuing their schooling. Expanding on the
existing causal tree literature, we demonstrated several adjustment strategies at the
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estimation stage. We also assessed localized covariate balance, and we performed loca-
lized sensitivity analyses to assess the effect of differential unobserved confounding.

It is well known in the machine learning literature that predictions based on a single
tree are sensitive to noise in the training set. The “greedy” optimization produces high-
variance solutions. Minor modifications to the input data can produce large effects on
the tree structure. Forests, or ensemble methods that average over many trees, tend to
have lower variance than single decision trees. However, ensemble methods are black-
box algorithms. The decrease in variance comes at the cost of interpretability. Causal
trees are useful for uncovering interpretable responsive subpopulations. The tree-based
machine learning literature, however, is rapidly evolving. New work in the literature
on causal trees and forests continues to try and identify a “best” tree from the forest, to
allow an interpretable tree similar to the causal tree we present here, while addressing
the instability of single decision trees and retaining the advantages of the causal forest
(e.g., see https://github.com/grf-labs/grf/issues/281). New approaches may ultimately
result in a preferable tree structure. Still, the general principles we describe will con-
tinue to be applicable.

Our predetermined ideas as to which groups matter surely stifle social scientific
progress. In this article, we adopted a machine learning approach based on decision
trees to studying causal effects that allows us to uncover treatment effect heterogeneity
and avoids common data-driven dangers. Machine learning algorithms are attractive
for generating models where there may be numerous interaction effects a priori
unknown to researchers. Causal trees offer a straightforward, intuitive analog to con-
ventional covariate partitioning routinely used by sociologists, yet with more defensi-
ble statistical properties and reproducible search procedures, yielding the opportunity
for meaningful data-driven discovery. These properties make causal trees a substan-
tively powerful tool for sociological applications. Additional approaches will emerge
that offer improvements to our understanding of treatment effect heterogeneity. We
urge sociologists interested in variation in effects to apply these techniques to engage
more explicitly with methods of discovery and improve research practices for explor-
ing effect heterogeneity.
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APPENDIX

Input: W, the set of covariates, and the outcome Y, i.e., lowwaprop.
# Remove missing values
data.work = D[,c(linear_terms, ps_indicator, Y, treatment_indicator)] %>% na.omit

# Covariates matrix

X = data.work[,c(linear _terms,ps_indicator)]
# Outcome variable

Y = data.workSlowwaprop

# Treatment

W = data.work$compcoll25

# Train causal forest model on the training set
ori.forest <- causal_forest(X, Y, W, num.trees = 4000)

# Estimated treatment effects

average treatment_effect(ori.forest, target.sample = "all")
> Estimate  Std. Error

> -0.176 0.024

# Best linear fit using forest predictions (on held-out data) as well as the mean forest
prediction as regressors, along with one-sided

heteroskedasticity-robust (HC3) SEs

test_calibration(tau.forest)

> Estimate  Std. Error  t-value P
> mean.forest.prediction 0.991 0.120 8236  0.000 ***
> differential.forest.prediction 0.710 0.485 1.464  0.072 +

# Best linear prediction of the CATE onto the propensity score
best_linear projection(ori.forest,X[,'propsc_com25 rf'])

> Estimate  Std. Error  t-value P

> intercept -0.217 0.033 -6.621 0.000  #**

> propsc_com25_rf 0.259 0.092 2.823 0.005  **

> Signif. codes: GRkE O 0.001 7 0.01  ** 0.05 4+ 0.1

hte.hat = predict(ori.forest)$predictions

Figure Al. Causal forest (generalized random forest) algorithm.
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Input: W, the set of covariates, and the outcome Y, i.e., lowwaprop.
Output: T, causal Tree; estimated treatment effects

# Remove missing values
trainset = D[!is.na(D[,Y]),]

# Set-up the formula used for constructing causal tree
formula = as.formula(paste(outcomevariable," ~ ",
paste(covariates,collapse = '+'), collapse="+"))

# Tree construction
tree = causalTree(formula,
data = trainset,
treatment = trainset[, treatment_indicator],
split.Rule ="CT",
cv.option ="CT",
split.Honest = T, cv.Honest = T, split.Bucket = F,
xval = 40,
cp=0,
propensity = trainset[, ps_indicator],
minsize = 20)
opep <- tree$Scptable[,1][which.min(tree$cptable[,4])]
opfit <- prune(tree, opcp)

# Return the predicted heterogeneous treatment effects
hte_effect <- opfit$frameS$yval[opfitSwhere]

Figure A2. Causal tree algorithm.

Table Al. ¢ Tests for Propensity and Covariate Partitioning Results

(a) (b

Propensity score (a) Low

(b) Mid —2.41

(c) High —3.12 2.41
Parental income (a) Low

(b) Mid ~1.81

(c) High —3.36 —1.87
Mothers’ education (a) Less than high school

(b) High school —3.32

(c) College or higher —3.06 .36
Ability (a) Low

(b) Mid —2.46

(c) High 291 —04
Race (a) Black

(b) Hispanic 40

(c) White —1.36 -1.97

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to individuals
who were 14 to 17 years old at the baseline survey in 1979 (n = 5,582), who had completed at least the 12th grade
(n = 4,548), and who had no missing data on the outcome (n = 4,382). College completion is measured as a 4-year
degree completed by age 25. Cells indicate unequal-variances #-test values for tests of difference between each of the
pairs of subgroup effects.
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Table A2. ¢ Tests for Recursive Partitioning Results

Leaf Legend Leaf 1 2 3 4 5 6 7 8 9 10
L1: mothers’ education < 12 1

L2: L1 & number of siblings > 2 2 —67

L3: L2 & low control > 10 3 —1.94 1.30

L4: L2 & low control < 10 4 —45 —-94 —-1.89

L5: L4 & female 5 34 —-10 —-97 .63

L6: L4 & male 6 —86 —1.22 —193 —-47 -96

L7: L1 & number of siblings < 2 7 —-1.59 -1.92 -2.55 —1.17 —1.60 —65

L8: mother’s education > 12 8 219 -3.04 441 -91 —1.60 —09 .77

L9: L8 & ASVAB scale < —44 9 191 130 .06 189 .99 1.94 255 4.8

L10: L8 & ASVAB scale >—44 10 299 —-94 513 —1.44 -2.06 —05 —43 —1.25 4.86

Note: Data are from the National Longitudinal Survey of Youth 1979 cohort. The sample is restricted to individuals
who were 14 to 17 years old at the baseline survey in 1979 (rn = 5,582), who had completed at least the 12th grade

(n =4,548), and who had no missing data on the outcome (n = 4,382). College completion is measured as a 4-year
degree completed by age 25. Cells indicate unequal-variances -test values for tests of difference between each of the
pairs of leaves represented by the leaf number. ASVAB = Armed Services Vocational Aptitude Battery; L = leaf.
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Notes

1. p-Hacking is the practice whereby researchers select the models that yield significant results.
Because journals generally prefer to publish statistically significant results, researchers have strong
incentives to select ways of analyzing their data by p-hacking.

2. Supervised learning tasks involving a continuous outcome are regression tasks, and those involving
a categorical outcome are classification tasks. Unsupervised algorithms do not use data on dependent
variables.

3. Using adaptive estimation, spurious extreme values of the outcome (or in our case, the treatment
effect) are likely to be placed into the same leaf as other extreme values, and thus the leaf-specific
means or effects are more extreme than they would be in an independent sample (Athey and Imbens
2016). Loss of precision due to smaller sample size for estimation is overshadowed by the gain in
minimizing bias.
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4. Traditional decision trees are not concerned with standard errors on leaf-specific treatment effects
because interpreting leaf-specific effects is not the motivation behind construction of the tree.

5. Alternative approaches for adjustment, such as two-stage least squares, are possible for estimating
leaf-specific effects.

6. Similarly, larger sample sizes will enable more precise detection of treatment effect heterogeneity,
but even a smaller sample size can yield informative patterns. We have a sample of about 4,000
cases, with about 800 treated units, and this sample yields interesting results. Researchers using a
very large sample may increase the minimum number of treated and control units within leaves to
limit the depth of the tree.

7. Ability is measured by the 1980 Armed Services Vocational Aptitude Battery, adjusted for age and
standardized. We also include a measure indicating whether data were imputed.

8. Respondents who completed college are more likely to come from families with highly educated par-
ents, high incomes, both parents present, and fewer siblings. They also have higher average cognitive
test scores and are more likely to have enrolled in college-preparatory classes. They attend more
advantaged high schools, have higher educational expectations and aspirations, and have friends with
higher educational expectations. College graduates are also less likely to have started families during
adolescence.

9. The linear propensity score is preferable to the raw score because the former does not penalize differ-
ences in pretreatment covariates at the tails of the propensity score distribution (Imbens and Rubin
2015). For example, on the raw propensity score scale, a treated unit with &(x) = 0.10 is considered
as close to a control unit with é(x) = 0.11 as to a control unit with &(x) = 0.09. But in terms of the
covariates, the treated unit tends to be closer to the former than to the latter. The linear propensity
score, by transforming é(x) back to the scale of the covariates, does not suffer from this issue.

10. Here we weight to produce an average treatment effect. Researchers may also be interested in esti-
mating average treatment effects on the treated.

11. Other propensity score specification methods may also be used. For example, a more interpretable
alternative to the random forest is to adopt an iterative procedure suggested by Imbens and Rubin
(2015).

12. We report Welch’s (unequal variances) ¢ tests between estimated IPW coefficients in Appendix
Table Al. Estimates based on the contrasts that we draw generally significantly differ from one
another.

13. The largest difference between the matching and causal forest (grf) estimates occur for low parental
income and for black respondents. Among these groups, matching suggests larger effects than the
causal forest (grf). However, the pattern of results across groups remains the same. That is, for both
estimation strategies, we find larger effects for low parental income than for high, and for black
respondents compared with white respondents.

14. An R Markdown file is available on Github and available upon request. We are also developing Stata
programs to implement these methods.

15. Larger leaves render results more consistent across samples yet depict less heterogeneity.

16. We report Welch’s (unequal variances) ¢ tests between estimated IPW coefficients in Appendix
Table A2. As with Appendix Table A1, estimates based on the contrasts that we draw generally sig-
nificantly differ from one another.

17. The causal trees did not identify many dichotomous covariates, such as race, as indicating key sub-
populations, as the tree prefers to split on continuous covariates. We note, however, that the subpo-
pulations identified have strong correlations with variables like race. This tree also did not identify
the propensity score as a key partition, yet these subpopulations are highly correlated with those stra-
tified by propensity scores.

18. The sensitivity results when vy is negative and A is positive are the same as those we present here, so
there is no loss of information by not including the opposite sign.
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